Chapter 7 Determinants

7-1 Permutations

1. Permutation

A permutation p of order n is an arrangement of the integers $1, 2, \ldots$ is any order.

Ex. n=2 permutations (2!)

1,2 $p(1)=1, p(2)=2$

2,1 p $(1)=2$, p $(2)=1$

Ex. n=3 permutations (3!)

1,2,3

- 1,3,2
- 2,1,3
- 2,3,1
- 3,1,2

 $3,2,1$ p (j)=the number the permutation has put in place j.

2. Even and Odds permutations (奇排列和偶排列)

Rules:

- (1) For each number k in the permutation, count the number of integer to its right that are smaller than k.
- (2) Sum all the numbers obtained in (1) in order to get a number.
- (3) If the number in (2) is odd, then the permutation is called odd permutation, otherwise even permutation.

Ex. permutation 2,5,1,4,3

 \therefore 2,5,1,4,3 is an odd permutation!

Ex. Permutation 2,1,5,4,3

 \therefore 2,1,5,4,3 is an even permutation!

3. Sign of permutation

$$
sgn(p)=\begin{cases} 0 & \text{if } p \text{ is even} \\ 1 & \text{if } p \text{ is odd} \end{cases}
$$

- 7.2 Definition of determinate
	- 1. Definition

$$
\det(A) = \sum_{p} (-1)^{\text{sgn}(p)} a_{1p(1)} a_{2p(2)} \cdots a_{np(n)}
$$

Where p (j) is determined by the permutations on 1, 2...n

2. Example

$$
A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}
$$

$$
\det(A) = \sum_{p} (-1)^{\text{sgn}(p)} a_{1p(1)} a_{2p(2)}
$$

 $n=2$

$$
\therefore \det(A) = (-1)^0 a_{11} a_{22} + (-1)^1 a_{12} a_{21}
$$

= $a_{11} a_{22} - a_{12} a_{21}$

7.3 Properties of determinate

1.Theorem

 A_{nxn} , B_{nxn}

 $|A| = 0$ if A has a zero row

2. Theorem (Type Ⅱ row operation)

 $|B| = \alpha |A|$ if B is obtained from, A by multiplying row k by a scalar α

3.Theorem (Type Ⅰ row operation)

 $|A| = -|B|$ if B is formed from A by interchanging two rows.

4. Corollary

 $|A| = 0$ if A has two identical rows.

Pf: Assume that B is obtained from A by interchanging the two identical rows.

$$
\therefore B = A \Rightarrow |B| = |A| \dots (1)
$$

But from theorem3, we have

$$
|B| = -|A| \dots (2)
$$

$$
\therefore (1) + (2)
$$

$$
|B| = |A| = 0
$$

5.Corollary

 $|A| = 0$ if row k of A is α times row i.

P.f:

case (1) $\alpha=0$

 $|A| = 0$ (Theorem I)

case (2) $\alpha \neq 0$

If B is obtained from A by multiplying know by $1/\alpha$, then B has two identical row i & k

$$
\therefore
$$
 |B| = 0 (corollary 4) (1)

But from theorem 2, we have

$$
|B|=\frac{1}{\alpha}|A|.\ldots.(2)
$$

∴From (1) & (2), we have

$$
|A|=0
$$

6.Theorem

$$
|AB| = |A||B|
$$

7.Theorem

$$
|A| = |A_1| + |A_2|
$$
\nif $|A| = \begin{vmatrix} \alpha_{11} & \cdots & \alpha_{ij} & \cdots & \alpha_{1n} \\ \vdots & & & \vdots & \vdots \\ \alpha_{k1} + \beta_{kj} & \cdots & \alpha_{kj} + \beta_{kj} & \cdots & \alpha_{kn} + \beta_{kn} \\ \vdots & & & & \vdots \\ \alpha_{n1} & \cdots & \alpha_{nj} & \cdots & \alpha_{nn} \end{vmatrix}$ \n
$$
= \begin{vmatrix} \alpha_{11} & \cdots & \cdots & \alpha_{1n} \\ \vdots & & & \vdots \\ \alpha_{k1} & \cdots & \cdots & \alpha_{kn} \\ \vdots & & & & \vdots \\ \alpha_{n1} & \cdots & \cdots & \alpha_{kn} \end{vmatrix} + \begin{vmatrix} \alpha_{11} & \cdots & \cdots & \alpha_{1n} \\ \beta_{k1} & \cdots & \cdots & \beta_{kn} \\ \vdots & & & \vdots \\ \alpha_{n1} & \cdots & \cdots & \alpha_{nn} \end{vmatrix}
$$
\n
$$
= |A_1| + |A_2|
$$

8. Theorem (Type Ⅲ row operation)

 $|B| = |A|$ If B is formed by A by adding r times row I to row k

P.f.

$$
|B| = \begin{vmatrix} \alpha_{11} & \cdots & \alpha_{ij} & \cdots & \alpha_{1n} \\ \vdots & & & & \vdots \\ \alpha_{i1} & \cdots & \cdots & \cdots & \alpha_{in} \\ \alpha_{i1} + \alpha_{k1} & \cdots & \cdots & \alpha_{in} + \alpha_{kn} \\ \vdots & & & & \vdots \\ \alpha_{n1} & \cdots & \cdots & \alpha_{1n} \\ \vdots & & & & \vdots \\ \alpha_{i1} & \cdots & \alpha_{in} \\ \alpha_{i1} & \cdots & \alpha_{in} \\ \vdots & & & & \vdots \\ \alpha_{i1} & \cdots & \alpha_{in} \\ \vdots & & & & \vdots \\ \alpha_{i1} & \cdots & \cdots & \alpha_{in} \\ \vdots & & & & & \vdots \\ \alpha_{n1} & \cdots & \cdots & \alpha_{nn} \\ \vdots & & & & & \vdots \\ \alpha_{n1} & \cdots & \cdots & \alpha_{nn} \\ \end{vmatrix}
$$

9. Theorem

$$
A = |A^T|
$$

- 7.4 Evaluation of Determinants by Elementary row operations
	- 1. Method

Given an n×n matrix A, us the row operations to obtain a new matrix B having at most one nonzero element is some row I or column j

Then $|A|$ is a scalar multiple of $|B|$ is a scalar multiple of the (n-1) \times (n-1)

determinant formed by deleting from B the row and column containing this nonzero element.

$$
\begin{vmatrix}\n\alpha_{11} & \cdots & \alpha_{ij} & \cdots & \alpha_{1n} \\
\vdots & & & & \vdots \\
\alpha_{i-11} & & & & \alpha_{i-1n} \\
0 & 0 & \alpha_{ij} & 0 & 0 \\
\alpha_{i+1} & & & & \vdots \\
\vdots & & & & \vdots \\
\alpha_{n1} & \cdots & \cdots & \alpha_{nn}\n\end{vmatrix}_{n \times n}
$$
\n
$$
= (-1)^{i+j} \alpha_{ij} \begin{vmatrix}\n\alpha_{11} & \cdots & \alpha_{1j-1} & \alpha_{1j+1} & \cdots & \alpha_{1n} \\
\vdots & & & & \vdots \\
\alpha_{i-11} & \cdots & \cdots & \cdots & \alpha_{i-1n} \\
\alpha_{i+11} & \cdots & \cdots & \cdots & \alpha_{i+1n} \\
\vdots & & & & \vdots \\
\alpha_{n1} & \cdots & \cdots & \cdots & \cdots & \alpha_{nn}\n\end{vmatrix}
$$

2. Example

Given
$$
A: \begin{pmatrix} -2 & 6 & 5 & -3 \\ 4 & 4 & -8 & 2 \\ 6 & 3 & 3 & -6 \\ 8 & 9 & -11 & 4 \end{pmatrix}
$$

Find: $|A|$ by row operations.

Sol:

$$
A = \begin{pmatrix} -2 & 6 & 5 & -3 \\ 4 & 4 & -8 & 2 \\ 6 & 3 & 3 & -6 \\ 8 & 9 & -11 & 4 \end{pmatrix} \times (-1/2)
$$

\n
$$
\Rightarrow B = \begin{pmatrix} 1 & -3 & -5/2 & -3/2 \\ 4 & 4 & -8 & 2 \\ 6 & 3 & 3 & -6 \\ 8 & 9 & -11 & 4 \end{pmatrix} \xrightarrow{\downarrow} \times (-4)
$$

\n
$$
\Rightarrow C = \begin{pmatrix} 1 & -3 & -5/2 & -3/2 \\ 0 & 16 & 2 & -4 \\ 0 & 21 & 18 & -15 \\ 0 & 33 & 9 & -8 \end{pmatrix}
$$

\n
$$
\therefore |B| = -\frac{1}{2} |A| \text{ (Theorem 2)}
$$

\n
$$
|C| = |B| \text{ (Theorem 8)}
$$

\n
$$
D = \begin{pmatrix} 16 & 2 & -4 \\ 21 & 18 & -15 \\ 33 & 9 & -8 \end{pmatrix}
$$

Formed form C by deleting row1 and column 1

$$
\therefore |D| = \frac{1}{(-1)^{1+1}C_{11}} |C| = |C|
$$

\n
$$
D = \begin{pmatrix} 16 & 2 & -4 \\ 21 & 18 & -15 \\ 33 & 9 & -8 \end{pmatrix} \xrightarrow{\times (-\frac{1}{2})} E = \begin{pmatrix} 8 & 1 & -2 \\ 21 & 18 & -15 \\ 33 & 9 & -8 \end{pmatrix} \xrightarrow{\perp} \times (-18)
$$

\n
$$
\longrightarrow F = \begin{pmatrix} 8 & 1 & -2 \\ -123 & 0 & 21 \\ -39 & 0 & 10 \end{pmatrix}
$$

$$
\therefore |E| = \frac{1}{2}|D|, |F| = |E|
$$

\n
$$
|F| = (-1)^{1+2} \begin{vmatrix} -123 & 21 \\ -39 & 10 \end{vmatrix} = 411
$$

\n
$$
\therefore |A| = -2|B| = -2|C| = -2|D| = -4|E| = -4|F|
$$

\n
$$
= -4 \times 411
$$

\n
$$
= -1644
$$

- 7.5 Cofactor Expansions
	- 1. Minor, M_{ij}

The minor of element a_{ij} of matrix A is the determinant of the $(n-1) \times (n-1)$ matrix obtained by deleting row i and column j of A.

Ex.

$$
A = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}
$$

Sol: minor of
$$
a_{12} = M_{12} = \begin{vmatrix} 2 & 8 \\ 3 & 9 \end{vmatrix} = -6
$$

\nminor of $a_{33} = M_{33} = \begin{vmatrix} 1 & 4 \\ 2 & 5 \end{vmatrix} = -3$

2. Cofactor, Cij

The cofactor of a_{ij} is the number $(-1)^{i+j}M_{ij}$ Ex.

Cofactor of $a_{12} = c_{12} = (-1)^{1+2}M_{12} = 6$ Cofactor of $a_{33} = c_{12} = (-1)^{3+3}M_{33} = -3$

3. Cofactor expansion by a row

If A is n×n, then for any integer I with $1 \le i \le n$, $|A| = \sum_{j=1}^{n} (-1)^{i+j}$ *j* $A = \sum_{j=1}^{\infty} (-1)^{i+j} a_{ij} M_{ij}$

P.f.

$$
|A| = \begin{vmatrix} a_{11} & \cdots & \cdots & \cdots & a_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & \cdots & a_{in} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & \cdots & \cdots & a_{nn} \end{vmatrix}
$$

$$
\begin{vmatrix}\na_{11} & \cdots & \cdots & \cdots & a_{1n} \\
\vdots & \ddots & \vdots & \vdots & \vdots \\
a_{i1} & 0 & \cdots & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n1} & \cdots & \cdots & a_{nn}\n\end{vmatrix}\n+ a_{i1} \begin{vmatrix}\na_{11} & \cdots & \cdots & \cdots & a_{1n} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
0 & a_{i2} & \cdots & \cdots & 0 \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
a_{n1} & \cdots & \cdots & a_{nn}\n\end{vmatrix} + \cdots
$$
\n
$$
+ a_{i1} \begin{vmatrix}\na_{11} & \cdots & \cdots & \cdots & a_{1n} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
a_{n1} & \cdots & \cdots & a_{nn}\n\end{vmatrix}
$$
\n
$$
= (-1)^{i+1} a_{i1} M_{i1} + (-1)^{i+2} a_{i2} M_{i2} + \cdots + (-1)^{i+n} a_{i+n} M_{in}
$$
\n
$$
= \sum_{j=1}^{n} (-1)^{i+j} a_{ij} M_{ij} \quad (i \text{ dummy index})
$$

Ex.

$$
A = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}
$$

Determine $|A|$ by cofactor expansion by a row.

Sol: Cofactor expansion by row $1(i = 1)$

$$
\therefore |A| = \sum_{j=1}^{3} (-1)^{1+j} a_{1j} M_{1j}
$$

= $a_{11} M_{11} - a_{12} M_{12} + a_{13} M_{13}$
= $\begin{vmatrix} 5 & 8 \\ 6 & 9 \end{vmatrix} - 4 \begin{vmatrix} 2 & 8 \\ 3 & 9 \end{vmatrix} + 7 \begin{vmatrix} 2 & 5 \\ 3 & 6 \end{vmatrix}$

4. Cofactor expansion by a column

Let A be n×n. Then for any integer j with $1 \le j \le n$, $|A| = \sum_{j=1}^{n} (-1)^{i+j}$ *j* $A = \sum_{j=1}^{\infty} (-1)^{i+j} a_{ij} M_{ij}$ Ex.

$$
A = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}, |A| = ?
$$

Sol: Cofactor expansion by column $1, j=1$

$$
|A| = \sum_{i=1}^{3} (-1)^{i+j} a_{i1} M_{i1}
$$

= $(-1)^{1+1} a_{11} M_{11} + (-1)^{2+1} a_{21} M_{21} + (-1)^{3+1} a_{31} M_{31}$
= $\begin{vmatrix} 5 & 8 \\ 6 & 9 \end{vmatrix} - 2 \begin{vmatrix} 4 & 7 \\ 6 & 9 \end{vmatrix} + 3 \begin{vmatrix} 4 & 7 \\ 5 & 8 \end{vmatrix}$

- 7.6 Determinants of Triangular Matrices
	- 1. Upper triangular matrix

An $n \times n$ matrix A is called upper triangular if all the elements below the main diagonal are zero.

$$
A: \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & & \\ \vdots & 0 & \ddots & \\ 0 & 0 & 0 & a_{nn} \end{pmatrix}
$$

2. Lower triangular matrix

Matrix A is called lower triangular matrix if all element upper the main diagonal are zero.

3. Determinants of triangular matrices

 $|A|$ = The product of its main diagonal element

 $= a_{11} \quad a_{22} \quad \cdots \quad a_{nn}$

7.7 A Determinant formula for a matrix Inverse.

1. Condition for no singularity let A be n×n, then A is no singular iff $|A| \neq 0$

p.f. Assume
$$
|A| \neq 0
$$

$$
\therefore |A| = \alpha |A_R| \neq 0
$$

∴ A_R can not have any zero rows

$$
\therefore A_R = I_n
$$

- \Rightarrow Rank (A) = Rank (A_R) =n
- \Rightarrow A is no singular

Assume A is no singular

$$
\implies A_R = I_n
$$

And:
$$
|A| = \alpha |A_R|
$$

\n $|A_R| = |I_n| = 1$
\n∴ $|A| = \alpha \neq 0$ (元分*v*) $\circled{E}(\mathbb{R}^n)$

2. Formula for matrix Inverse let A be n×n no singular matrix.

Then $B=A^{-1}$

Where the element b_{ij} of B is given as follows $b_{ij} = \frac{1}{|A|}(-1)^{i+j} M_{ij}$ $b_{ii} = \frac{1}{1+i}(-1)^{i+j}$

Ex.
$$
A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}
$$

\n $|A| = \begin{vmatrix} 1 & 3 \\ 2 & 4 \end{vmatrix} = -2 \neq 0$ No singular
\n $\therefore A^{-1} = B = \begin{bmatrix} \frac{1}{|A|} (-1)^{i+j} M_{ij} \end{bmatrix}$
\n $= \frac{1}{|A|} \begin{bmatrix} (-1)^{1+1} M_{11} & (-1)^{1+2} M_{21} \\ (-1)^{2+1} M_{12} & (-1)^{2+2} M_{22} \end{bmatrix}$

7.8 Cramer's Rule

Let A be nonsingular $n \times n$ matrix. Then the ungula solution of $AX = B$ is

12

 \mathbf{L} \perp

22

 \vert

$$
x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}
$$

Where $x_k = \frac{1}{|A|} A(K; B)$ $X_k = \frac{1}{|A|} |A(K;B)|$ and $A(K;B)$ is the matrix obtained from A by

replacing column K of A by matrix B.

Ex.
$$
\begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 5 \\ 6 \end{pmatrix}
$$

A= $\begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$ no singular

A unique solution exists

$$
x_1 = \frac{A(1; B)}{|A|} = \frac{\begin{vmatrix} 5 & 3 \\ 6 & 4 \end{vmatrix}}{\begin{vmatrix} 1 & 3 \\ 2 & 4 \end{vmatrix}}
$$

$$
x_2 = \frac{A(2; B)}{|A|} = \frac{\begin{vmatrix} 1 & 5 \\ 2 & 6 \end{vmatrix}}{\begin{vmatrix} 1 & 3 \\ 2 & 4 \end{vmatrix}}
$$