
Chapter 7

Determinants



7-1 Permutations

1. Permutation
A permutation p of order n is an arrangement of the integers1,2…nis any order.

Ex. n=2 permutations (2!)
1,2 p (1)=1,p (2)=2
2,1 p (1)=2,p (2)=1

Ex. n=3 permutations (3!)
1,2,3
1,3,2
2,1,3
2,3,1
3,1,2
3,2,1 p (j)=the number the permutation has put in place j.

2. Even and Odds permutations (奇排列和偶排列)

Rules:
(1) For each number k in the permutation, count the number of integer to its

right that are smaller than k.
(2) Sum all the numbers obtained in (1) in order to get a number.
(3) If the number in (2) is odd, then the permutation is called odd permutation,

otherwise even permutation.

Ex. permutation 2,5,1,4,3

03
14
01
35
12

int__ kegersofnumberk 

Sum 5
2,5,1,4,3 is an odd permutation!



Ex. Permutation 2,1,5,4,3

03
14
25
01
12

int__ kergersofnumbersk 

Sum 4
2,1,5,4,3 is an even permutation!

3. Sign of permutation

sgn(p)=
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1
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7.2 Definition of determinate
1. Definition
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Where p (j) is determined by the permutations on 1, 2…n
2. Example
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7.3 Properties of determinate
1.Theorem
Anxn, Bnxn

0A if A has a zero row

2. Theorem (Type Ⅱ row operation)

permutations even or odd P(1) P(2) sgn(p)

1,2 Even 1 2 0

2,1 Odd 2 1 1



AB  if B is obtained from, A by multiplying row k by a scalarα

3.Theorem (Type Ⅰ row operation)

BA  if B is formed from A by interchanging two rows.

4. Corollary

0A if A has two identical rows.

Pf: Assume that B is obtained from A by interchanging the two identical rows.

)1(ABAB 

But from theorem3, we have

)2(AB 
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0AB

5.Corollary

0A if row k of A isα times row i.

P.f:
      case (1)  α= 0

0A (Theorem )Ⅰ

      case (2)  α≠0
      If B is obtained from A by multiplying know by 1/α, 

then B has two identical row i & k

0B (corollary 4) ...... (1)

But from theorem 2, we have
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From (1)∴ & (2), we have
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8. Theorem (Type row operation)Ⅲ

AB  If B is formed by A by adding r times row I to row k

P.f.
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9. Theorem

TAA 

7.4 Evaluation of Determinants by Elementary row operations
1. Method

Given an n×n matrix A, us the row operations to obtain a new matrix B
having at most one nonzero element is some row I or column j

Then A is a scalar multiple of B is a scalar multiple of the (n-1) × (n-1)

determinant formed by deleting from B the row and column containing this
nonzero element.
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2. Example

Given

























41198
6336

2844
3562

:A

Find: A by row operations.

Sol:
)2/1(

41198
6336

2844
3562 
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89330
1518210
42160

2/32/531
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AB
2
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 (Theorem 2)

BC  (Theorem 8)






















8933

151821
4216

D

Formed form C by deleting row1 and column 1
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7.5 Cofactor Expansions
1. Minor, Mij

The minor of element aij of matrix A is the determinant of the (n-1) × (n-1)
matrix obtained by deleting row i and column j of A.

Ex.


















963
852
741

A

Sol: minor of a12=M12=
93
82

=-6

minor of a33=M33=
52
41

=-3

2. Cofactor, Cij

The cofactor of aij is the number (-1)i+jMij

Ex.
Cofactor of a12 = c12 = (-1)1+2M12= 6
Cofactor of a33 = c12 = (-1)3+3M33= -3

3. Cofactor expansion by a row

If A is n×n, then for any integer I with ni 1 , 
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963
852
741

A

Determine A by cofactor expansion by a row.

Sol: Cofactor expansion by row 1 (i = 1)
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4. Cofactor expansion by a column

Let A be n×n. Then for any integer j with nj 1 , 
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Sol: Cofactor expansion by column 1, j=1
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7.6 Determinants of Triangular Matrices
1. Upper triangular matrix

An n×n matrix A is called upper triangular if all the elements below the main
diagonal are zero.

A:
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2. Lower triangular matrix
Matrix A is called lower triangular matrix if all element upper the main
diagonal are zero.

3. Determinants of triangular matrices

A The product of its main diagonal element

nnaaa 2211

7.7 A Determinant formula for a matrix Inverse.

1. Condition for no singularity let A be n×n, then A is no singular iff 0A

p.f. Assume 0A

∴ 0 RAA 

∴ AR can not have any zero rows
∴ AR = In

 Rank (A) = Rank (AR) =n
 A is no singular
Assume A is no singular
 AR = In



And:
1
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∴ 0A (充分必要條件)

2. Formula for matrix Inverse let A be n×n no singular matrix.
Then B=A-1

Where the element ijb of B is given as follows   ij
ji

ij M
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b  1
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Ex. 
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7.8 Cramer’s Rule
Let A be nonsingular n×n matrix. Then the ungula solution of AX=B is
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Where );(
1

BKA
A

xk  and );( BKA is the matrix obtained from A by

replacing column K of A by matrix B.

Ex. 
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no singular

A unique solution exists
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