
VII. Series and Residues

1. Sequence and series
(1) Sequences
(i) Definition

A Sequence { nz }is a function whose domain is the set of positive integers.

EX: Sequence { ni1 } is 1+i, 0, 1-i, 2, 1+i, ………..
Somain n=1, n=2, n=3, n=4, n=5, ……

(ii) Convergence
A sequence { nz } converges to a complex number L iff eR ( nz ) and

mI ( nz ) converges to LI m
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(2) Series
(i) Infinite Series
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(ii) Geometric Series
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Special Geometric series
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(iii) convergence of series

If the sequence of partial sums {Sn} converges to L, the the series 
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kZ

converges to L.



EX: Geometric series 
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Sol: thn partial sum Sn of geometric series is Sn = a+Az+…..+aZ 1n =
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{Sn}: Sequence of partial sums of series
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(iv) convergence Test
A. Absolute convergence

The series 


1k
kZ converge absolutely if 
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kZ converges

B. Ratio Test

Suppose 


1k
kZ is a series of nonzero complex terms such that L

Z
Z

n

n

n




1lim

(a) If L<1, then the series converges absolutely
(b) If L>1, or L=, then the series diverge
(c) If L=1, the test is incondusive

C. Root Test

Suppose 


1k
kZ is a series of complex terms such that LZn
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(a) same as B(a)
(b) same as B(b)
(c) same as B(c)

(3)Power Series
(i) Definition
A power series in )( 0ZZ  is an infinite series of the form :
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(ii)Circle and radius of convergence

If the series k

k
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converges for RZZ  0 and diverges for

RZZ  0 , where R0 the circle RZZ  0 is called the



circle of convergence, R is called the radius of convergence.

From ratio test the condition for convergence of power series
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The radius of convergence R can be :
Radius of convergence
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※A similar remarks for root test by using n
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Ex : power series 
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Sol : Using ratio test, we have
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Ex : power series ?z-z?,R)2)(
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(iii) Properties of a power series within the circle of convergence

A. Continuity

A power series 
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k zza represents a continuence function

f(z)

B. Term-by-Term

A power series 
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C. Term-by-Term Integration







0

0 )(
k

k
k zza can be integrated term by term for any contour C in

Rzz  0

2. Taylor Series
(1) Taylor series

If f(z) is analytic in the interior of a circle with center 0Z and radius R

then Rzz  0 we have
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series ,which are called Taylor series of f(z) with center 0Z
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(2) Taylor Theorem



Let f(z) be analytic within the domain D containing 0Z . The f(z) has the

representation
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valid for the largest circle C with center of 0Z and radius R contained in D

[proof]
z = fixed point with C
S= variable of integration

From Cauchy Integral theorem , we have
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From Cauchy Integral formula for derivative We have
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From Cauchy Integral formula for derivative
We have
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Now, show that 0)( zRn

From ML-inequality, we obtain
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Radius of convergence of above series ?
By ratio test , we have
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Sol : From geometry series , we have
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3. Laurent series

(1) Annulus
A ring-shaped region between tow circles

(2) Open annulus A

RrwithAnd

circlesbetweenregionopenAn
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Some possible annulus domain

r R domain

0 finite
Interior of Rzz  0 except 0Z



≠0 ∞
All points exterior to rzz  0

0 ∞ Entire complex plane except 0Z

finite finite
Points exterior to rzz  0 and

interior to Rzz  0

(3) Laurent Series

Support that rzzq
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00 z-zdiskin theconverges)( . Both series converges

in the open annulus Rzzr  0 The sum is written as
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which represent an analytic function in the annulus. All expansions of
this type are called Laurent series

(4) Laurent theorem
Let f(z) be analytic within the annulus domain A defined by

Rzz  01 .Then f(z) has the series representation
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valid for Rzzr  0 .coefficient ka are given by
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When C is simple closed curve within A with 0z in the interior
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From Cauchy Integral formula
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Combining equations (2) and (6) , equation (1) yields
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And equations (3) and (5) can be written as a single integral
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Remarks:

A. If ak
= 0 for k = -1, -2 …..

Laurent series is Taylor series . Laurent expansion a generalization of a Taylor
series

B. The formula for the coefficients ak
of a Laurent series is seldom used

(a) geometric series :
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(b) known series : Sin z , Cosz ez ……
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