
VI. Integral in the complex plane
1. Contour Integral

(1) Contour integral (complex line integral)

Let     yxivyxuzf ,,  be defined along a piecewise smooth

curve (contour or path) c defined by iyxz 

The contour integral of zf along c is
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(2) Alternative form

Assume smooth curve c is defined by )()()( tiytxtz  , bta 
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(3) Basic properties of complex line integral
A. Linear operation
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B. Decomposition
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C. Reversion

 
1

0

0

1

)()(
z

z

z

z
dzzfdzzf

(4) A bounding theorem (ML-inequality)
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2. Cauchy-Goursat Theorem (Cauchy Integral Theorem)
(1)Simple closed contour (path) a close path doesn’t intersect itself

(2)Simple connected domain

Every simple closed contour C lying in domain D can be shrunk to a

point
Without leasing D



(3)Cauchy-Goursat Theorem

A. Suppose a function f(z) is analytic in a simple connected domain D,

Then for
Every simple closed path C in D
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B. If f(z) in analytic at all points within and a simple closed contour

C, Then
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According to Green Theorem, we have
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∵ f(z) is analytic in D

∴Cauchy－Riemann equation are satisfied
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EX: Evaluate 0dze
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z  C: simple closed contour

(Sol)
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z  is entire function

ze is analytic on entire complex
∴ Form Cauchy integral theorem, we have
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Acconding to Cauchy integral-theorem, we have
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(4) multiple connected domain (MCD)
A domain is not simple connected called
Multiple connected domain

(5) Cauchy Integral Theorem for MCD Let nCCCC ...,, 321 be simple

closed curves with positive orientation. Courves nCCCC ...,, 321 are

interior to curve c and have no points in common.

If function )(zf is analytic on each contour and at each point interior



to C but exterior to all the nC , then
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0 (Form Cauchy integnal theorem)



Principle of Deformation of Contour
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(Cachy integral theorem)
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[note]
This formula allow us to evaluate an integral over an complex simple closed
contour by replacing a simple contour.
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3.Independence of Path
(1) path independent

if zf is an analytic function in a simple connected domain D，then

c dzzf is independent of the path C in D

  zFzFdzzf
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where 10 & zz are initial point and end point of contour C； zf is an



antiderivative (or indefinite integral) of zf in D，  zfzF '

[proof]

contour 21 & cc are continuous in a simple connected domain D，and 1& cc from

a closed contour
zf is analytic in D，from Cauchy integral theorem，we have
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Evaluate  c
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4.Cauchy Integral Formula
(1) consequence of Caucht-Goursat Theorem

A. The value of an analytic function zf at 0z in simple connected

domain can represent by a contour integral
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B. An analytic function in a simply connected domain posses derivatives of
all order
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(2) Cauchy Integral Formula
If zf is analytic at all point within and on a simple closed contour C
lying within a simple connected domain D，and 0z is any point interior to

C，then   
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[proof]
By principle of deformation of contour
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By ML-integrality，and choose 1c :
20


zz

     















  2
2

0

0

0

0
1

1




zz
zfzf

zz
zfzf

I
c

  





 





zz

zfzf 0

 zf is continuous at 0z ，for small 0 ，such that
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(3) Cauchy Integral Formula for Derivative
If zf is analytic in a simply connected domain D，and C is a simple
closed contour lying within D，then
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where 0z is point interior to C
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