VI. Integral in the complex plane

1. Contour Integral
(1) Contour integral (complex line integral)

Let $f(z)=u(x, y)+i v(x, y)$ be defined along a piecewise smooth curve (contour or path) c defined by $z=x+i y$

The contour integral of $f(z)$ along c is

$$
\begin{aligned}
& \int_{c} f(z) d z=\int_{c}(u+i v)(d x+d y)=\int_{c}(u d x-v d y)+i \int_{c}(v d x+u d y) \\
& \quad \rightarrow \text { Two real line integral }
\end{aligned}
$$

(2) Alternative form

Assume smooth curve c is defined by $z(t)=x(t)+i y(t), a \leq t \leq b$ Then

$$
\begin{aligned}
& \int_{c} f(z) d z=\int_{a}^{b}\left[u x^{\prime}(t)-v y^{\prime}(t)\right] d t+i \int_{a}^{b}\left[v x^{\prime}(t)+u y^{\prime}(t)\right] t t \\
& u=u(x(t), y(t)), v=(x(t)+y(t)) \\
& \therefore \int_{c} f(z) d z=\int_{a}^{b}\left[(u+i v)\left(x^{\prime}(t)+i y^{\prime}(t)\right)\right] l t=\int_{a}^{b} f(z(t)) z^{\prime}(t) d t \\
& \left(d z=\frac{d z}{d t} d t=z^{\prime}(t) d t\right)
\end{aligned}
$$

Ex: evaluate $\oint_{c_{Z}} \frac{1}{d z}$

$$
\mathrm{c}: \mathrm{z}(\mathrm{t})=\cos \mathrm{t}+\mathrm{isint}
$$

Sol: method1:

$$
\begin{aligned}
& \mathrm{z}(\mathrm{t})=\cos \mathrm{t}+\mathrm{i} \operatorname{sint} \\
& \mathrm{z}^{\prime}(\mathrm{t})=-\sin \mathrm{t}+\mathrm{i} \cos \mathrm{t} \\
& \therefore \oint_{c} \frac{d z}{z}=\int_{0}^{2 \pi} \frac{z^{\prime}(t)}{z(t)} d t=\int_{0}^{2 \pi-\sin t+i \cos t} \frac{\cos t+i \sin t}{} d t=i \int_{0}^{2 \pi} d t=2 i \pi
\end{aligned}
$$

method2:

$$
\begin{aligned}
& \mathrm{z}(\mathrm{t})=\text { cost }+\mathrm{isint}=\mathrm{e}^{\mathrm{it}} \\
& z^{\prime}(t)=i e^{i t} \\
& \therefore \oint_{c} \frac{d z}{z}=\int_{0}^{2 \pi} \frac{z^{\prime}(t)}{z(t)} d t=\int_{0}^{2 \pi} \frac{i e^{i t}}{e^{i t}} d t=2 i \pi
\end{aligned}
$$

(3) Basic properties of complex line integral
A. Linear operation

$$
\int_{c}[\alpha f(z)+\beta g(z)] d z=\alpha \int_{c} f(z) d z+\beta \int_{c} g(z) d z
$$

B. Decomposition
$\int_{c} f(z) d z=\int_{c_{1}} f(z) d z+\int_{c_{2}} f(z) d z \quad$ if $c=c_{1}=c_{2}$
C. Reversion
$\int_{z_{0}}^{z_{1}} f(z) d z=-\int_{z_{1}}^{z_{0}} f(z) d z$
(4) A bounding theorem (ML-inequality)

If $|f(z)| \leq M$ for all z on c , then $\left|\int_{c} f(z) d z\right| \leq M L$ where L is the length of c
Ex: $\int_{c} \frac{d z}{z} c: z(t)=\cos t+i \sin t, 0 \leq t \leq 2 \pi$
Sol: $f(z)=\frac{1}{z}$
$|f(z)|=\left|\frac{1}{z}\right|=\frac{1}{|z|} \leq 1=M$ for all z on c
$\therefore \quad$ According to ML-inequality, we have
$\therefore \quad\left|\int_{c} \frac{d z}{z}\right| \leq M L=(1)(2 \pi)$
2. Cauchy-Goursat Theorem (Cauchy Integral Theorem)
(1)Simple closed contour (path) a close path doesn't intersect itself

simple

(2)Simple connected domain

Every simple closed contour C lying in domain D can be shrunk to a point
Without leasing D

(3)Cauchy-Goursat Theorem
A. Suppose a function $f(z)$ is analytic in a simple connected domain D , Then for
Every simple closed path C in D

$$
\oint_{C} f(z) d z=0
$$

B. If $f(z)$ in analytic at all points within and a simple closed contour

C, Then

$$
\oint_{C} f(z) d z=0
$$

[Poof]

$$
\oint_{C} f(z) d z=\oint_{C}(u d x-v d y)+i \oint_{C}(v d x+u d y)
$$

According to Green Theorem, we have

$$
\begin{array}{ll}
& \int_{C} f d x+g d y=\int_{D} \int\left(\frac{\partial g}{\partial x}-\frac{\partial f}{\partial y}\right) d A \\
\therefore \quad & \int_{C}(u d x-v d y)=\int_{D} \int\left(-\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) d A \\
& \int_{C}(v d x+u d y)=\int_{D} \int\left(\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}\right) d A
\end{array}
$$

$\because f(z)$ is analytic in D
\therefore Cauchy - Riemann equation are satisfied

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \\
\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
\end{array}\right.
$$

Hence

$$
\begin{gathered}
\\
\\
I_{l}=0 \\
I_{2}=0 \\
\therefore \quad \oint_{C} f(z) d z=0
\end{gathered}
$$

EX: Evaluate $\oint_{C} e^{z} d z=0 \quad \mathrm{C}$: simple closed contour (Sol)
$\oint_{C} e^{z} d z=0$ is entire function
e^{z} is analytic on entire complex
$\therefore \quad$ Form Cauchy integral theorem, we have

$$
\oint_{C} e^{z} d z=0
$$

Ex. Evaluate $\oint_{c} \frac{d z}{z^{2}} \quad c:(x-2)^{2}+\frac{(y-5)^{2}}{4}=1$

$$
f(z)=\frac{1}{z^{2}} \quad \text { analytic except } \mathrm{z}=0
$$

$\therefore f(z)=\frac{1}{z^{2}}$ is analytic within and on c.
Acconding to Cauchy integral-theorem, we have

$$
\oint_{c} \frac{d z}{z^{2}}=0
$$

If the contour C is $x^{2}+\frac{y^{2}}{4}=1$,
Then $\oint_{c} \frac{d z}{z^{2}}=$?

(4) multiple connected domain (MCD)

A domain is not simple connected called
Multiple connected domain

(5) Cauchy Integral Theorem for MCD Let $C_{1}, C_{2}, C_{3} \ldots C_{n}$ be simple closed curves with positive orientation. Courves $C_{1}, C_{2}, C_{3} \ldots C_{n}$ are interior to curve c and have no points in common.

If function $f(z)$ is analytic on each contour and at each point interior
to C but exterior to all the C_{n}, then

$$
\oint_{c} f(z) d z=\sum_{k=1}^{n} \oint_{c_{k}} f(z) d z
$$

[proof]

$$
\therefore \int_{c-c_{1}-c_{2}-c_{n}} f(z) d z+\sum(\downarrow+\uparrow)
$$

$=\oint_{c} f(z) d z+\sum_{k=1}^{n} \oint_{C_{s}} f(z) d z+\int_{\sum(y, f)} f(z) d z$
$=0$ (Form Cauchy integnal theorem)

$$
\oint_{c} f(z) d z=-\sum_{k=1}^{n} \oint_{c_{1}} f(z) d z=\sum_{k=1}^{n} \oint_{k_{1}} f(z) d z
$$

Principle of Deformation of Contour

$\oint_{c} f(z) d z=\oint_{c 1} f(z) d z$
[proof]

$\because \int_{c 1+c 2+c 3} f(z) d z$
$=\oint_{c 1} f(z) d z+\int_{c 2 \uparrow}+\int_{c 3 \downarrow}+\oint_{c} f(z) d z$
$=0$
(Cachy integral theorem)
$\therefore \oint_{c} f(z) d z=\oint_{c 1} f(z) d z$
[note]
This formula allow us to evaluate an integral over an complex simple closed contour by replacing a simple contour.
Ex :
Evaluate $I=\oint_{c} \frac{d z}{z-i}, \mathrm{c}$ is as shown

Sol

$$
f(z)=\frac{1}{z-i} \text { is analytic except } z=i
$$

let contour $\mathcal{C}_{1}:|z-i|=1$ enclosing
the point $z=i$
$\therefore f(z)=\frac{1}{z-i}$ is analytic between $\boldsymbol{c}_{1} \& \boldsymbol{C}_{2}$ and on $\boldsymbol{c}_{1} \& \boldsymbol{C}_{2}$
\therefore from Cauchy-integral theorem for MCD, we have use complex line integral to evaluate $\oint_{C_{1}} \frac{d z}{z-i}$

$$
\begin{aligned}
& c_{1}:|z=i|=1 \\
& z-i=e^{i t} \quad 0 \leq t \leq 2 \pi \\
& d z=i e^{i t} d t \\
& \therefore \oint_{c_{1}} \frac{d z}{z-i}=\int_{0}^{2 \pi} \frac{i e^{i t} d t}{e^{i t}}=\left.i t\right|_{0} ^{2 \pi}=2 \pi i
\end{aligned}
$$

EX:
Evaluate $\quad \oint_{c} \frac{d z}{z^{2}+1}$

$$
C:|z|=3
$$

Sol

$f(z)=\frac{1}{z^{2}+1}$ is not analytic at $\pm i$
Take $\left\{\begin{array}{l}c_{1}=|z-i|=\frac{1}{2} \\ c_{2}=|z+i|=\frac{1}{2}\end{array}\right.$ with no common point
Form Cauchy integral theorem form MCD, we have

$$
\begin{aligned}
\oint_{c} \frac{d z}{z^{2}+1} & =\oint_{c_{1}} \frac{d z}{z^{2}+1}+\oint_{c_{2}} \frac{d z}{z^{2}+1} \\
& =\frac{1}{2 i}\left[\oint_{C_{1}} \frac{1}{z-i}-\oint_{C_{1}} \frac{d z}{z+i}\right]+\frac{1}{2 i}\left[\oint_{c_{2}} \frac{d z}{z-i}-\oint_{c_{2}} \frac{d z}{z+i}\right] \\
& =\pi-\pi=0
\end{aligned}
$$

3.Independence of Path

(1) path independent
if $f(z)$ is an analytic function in a simple connected domain D , then $\int_{c} f(z) d z$ is independent of the path C in D

$$
\int_{c} f(z) d z=F\left(z_{1}\right)-F(z)
$$

where $z_{0} \& z_{1}$ are initial point and end point of contour $\mathrm{C} ; f(z)$ is an
antiderivative (or indefinite integral) of $f(z)$ in $\mathrm{D}, F^{\prime}(z)=f(z)$
[proof]

contour $c_{1} \& c_{2}$ are continuous in a simple connected domain D , and $c \& c_{1}$ from a closed contour
$\because f(z)$ is analytic in D , from Cauchy integral theorem, we have
$\oint_{c-c_{1}} f(z) d z=0$

$$
=\int_{c} f(z) d z+\int_{c_{1}} f(z) d z
$$

$$
=\int_{c}^{f(z) d z-\int_{c_{1}} f(z) d z}
$$

$\therefore \int_{c} f(z) d z=\int_{c_{1}} f(z) d z$
independent of path

EX:
Evaluate $I=\int_{c} 2 z d z \quad \mathrm{C}:$ given as shown

Sol
$f(z)=2 z$ is entire function
$\therefore I=\int_{c} 2 z d z$ is independent of path

$$
\begin{aligned}
\therefore I=\int_{c} 2 z d z=\int_{z_{0}=-1}^{z_{1}=-1+i} 2 z d z & =\left.z^{2}\right|_{-1} ^{-1+i} \\
& =(-1+i)^{2}-(-1)^{2} \\
& =-1-2 i
\end{aligned}
$$

4.Cauchy Integral Formula

(1) consequence of Caucht-Goursat Theorem
A. The value of an analytic function $f(z)$ at z_{0} in simple connected domain can represent by a contour integral

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{c} \frac{f(z)}{z-z_{0}} d z
$$

B. An analytic function in a simply connected domain posses derivatives of all order

$$
f^{n}\left(z_{0}\right)=\frac{n!}{2 \pi i} \oint_{c} \frac{f(z)}{z-z_{0}} d z
$$

(2) Cauchy Integral Formula

If $f(z)$ is analytic at all point within and on a simple closed contour C
lying within a simple connected domain D , and z_{0} is any point interior to C , then $f\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{c} \frac{f(z)}{z-z_{0}} d z$

[proof]
By principle of deformation of contour

$$
\begin{aligned}
I & =\oint_{c} \frac{f(z)}{z-z_{0}} d z \\
& =\oint_{c_{1}} \frac{f(z)}{z-z_{0}} d z \\
& =\oint_{c_{1}} \frac{f\left(z_{0}\right)+f(z)-f\left(z_{0}\right)}{z-z_{0}} d z \\
& =f\left(z_{0}\right) \oint_{c_{1}} \frac{d z}{z-z_{0}}+\oint_{c_{1}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z \\
& =2 \pi i+I_{1}
\end{aligned}
$$

By ML-integrality, and choose $c_{1}:\left|z-z_{0}\right|=\frac{\delta}{2}$

$$
\begin{aligned}
\therefore\left|I_{1}\right| & =\left|\oint_{c_{1}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}\right| \leq\left|\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}\right| 2 \pi\left(\frac{\delta}{2}\right) \\
& =\frac{\left|f(z)-f\left(z_{0}\right)\right|}{|z-z|} \pi \delta \leq \frac{\varepsilon}{\delta} \pi \delta=\pi \varepsilon
\end{aligned}
$$

$\because f(z)$ is continuous at z_{0}, for small $\varepsilon>0$, such that
$\left|f(z)-f\left(z_{0}\right)\right|<\varepsilon$ wherever $\left|z-z_{0}\right|<\delta$
$\therefore \varepsilon \rightarrow 0 \Rightarrow I_{1}=0$
$\therefore \oint_{c} \frac{f(z)}{z-z_{0}}=\frac{1}{2 \pi i} \oint_{c} \frac{f(z)}{z-z_{0}} d z$
(3) Cauchy Integral Formula for Derivative

If $f(z)$ is analytic in a simply connected domain D , and C is a simple closed contour lying within D , then

$$
f\left(z_{0}\right)=\frac{n!}{2 \pi i} \oint_{c} \frac{f(z)}{c\left(z-z_{0}\right)^{n+1}} d z
$$

where z_{0} is point interior to C
EX :
Evaluate $\oint_{c} \frac{z^{2}+1}{z^{2}-1} d z$ where C is unit circle with center at (1) $z_{0}=1$ (2) $z_{0}=1 / 2$ (3) $z_{0}=-1$ (4) $z=i$

Sol
(1) $|z-1|=1$

$\oint_{c} \frac{z^{2}+1}{z^{2}-1} d z=\oint_{c} \frac{1}{z-1}\left(\frac{z^{2}+1}{z+1}\right) d z$
$\oint_{c} \frac{z^{2}+1}{z^{2}-1} d z$ is analytic within and on contour $\mathrm{C}:|z-1|=1$, and $z_{0}=1$ is within C
\therefore from Cauchy integral theorem, we have

$$
\begin{aligned}
\oint_{c} \frac{\left(\frac{z^{2}+1}{z+1}\right)}{z-1} & d z
\end{aligned}=2 \pi i\left(\frac{z^{2}+1}{z+1}\right)_{z=1}, ~\left(\frac{1^{2}+1}{1+1}\right) \quad 1
$$

$\oint_{c} \frac{z^{2}+1}{z^{2}-1} d z \quad$ isn't analytic at $\quad z= \pm 1$
C: $|z-1|=1$
$z-1=e^{i e}-0 \leq t \leq 2 \pi$
$\oint_{c_{1}} f(z) d z=\frac{1}{2} \oint_{c_{1}}\left[\frac{z^{2}+1}{z-1}-\frac{z^{2}+1}{z+1}\right] d z$
$=\frac{1}{2} \oint_{c_{1}} \frac{z^{2}+1}{z-1} d z=\frac{1}{2} \int_{0}^{2 \pi} \frac{\left(e^{i t}+1\right)^{2}+1}{e^{i t}} i e^{i t} d t$
$=\frac{i}{2} \int_{0}^{2 \pi}\left(e^{2 i t}+2 e^{i t}+2\right) d t$
$=\frac{i}{2}\left[\frac{1}{2 i} e^{2 i t}+\frac{2}{i} e^{i t}+2 t\right]_{0}^{2 \pi}$
$=2 \pi i$
(2) $\left|z-\frac{1}{2}\right|=1$ containing $z=1$

(3) $|z+1|=1$

$$
\begin{aligned}
& \oint_{c} \frac{z^{2}+1}{z^{2}-1} d z=\oint_{c} \frac{\left(\frac{z+1}{z-1}\right)}{z+1} d z \\
& f(z)=\frac{z+1}{z-1} \text { is analytic within and on contour }|z+1|=1
\end{aligned}
$$

$$
\therefore \oint_{c} \frac{z^{2}+1}{z^{2}-1} d z=2 \pi i\left(\frac{z^{2}+1}{z-1}\right)
$$

$$
=2 \pi i\left(\frac{(-1)^{2}+1}{-1-1}\right)
$$

$$
=2 \pi i
$$

(4) $|z-i|=1$

$\because \frac{z^{2}+1}{z^{2}-1}$ is analytic within and on contour $|z-i|=1$
\therefore from Cauchy integral theorem
$\oint_{c} \frac{z^{2}+1}{z^{2}-1} d z=0$

