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AbstractÐMany machine vision applications, such as compression, pictorial database querying, and image understanding, often need

to analyze in detail only a representative subset of the image, which may be arranged into sequences of loci called regions-of-interest,

ROIs. We have investigated and developed a methodology that serves to automatically identify such a subset of aROIs (algorithmically

detected ROIs) using different Image Processing Algorithms, IPAs, and appropriate clustering procedures. In human perception, an

internal representation directs top-down, context-dependent sequences of eye movements to fixate on similar sequences of hROIs

(human identified ROIs). In this paper, we introduce our methodology and we compare aROIs with hROIs as a criterion for evaluating

and selecting bottom-up, context-free algorithms. An application is finally discussed.

Index TermsÐEye movements, scanpath theory, regions of interest identification and comparison.

æ

1 INTRODUCTION

EYE movements are an essential part of human vision
because they must carry the fovea and, consequently,

the visual attention to each part of an image to be fixated
upon and processed with high resolution. An average of
three eye fixations per second generally occurs during
active looking; these eye fixations are intercalated by rapid
eye jumps, called saccades, during which vision is
suppressed. Only a small set of eye fixations, hROIs, human
detected Regions-of-Interest, are usually required by the
brain to recognize a complex visual input (Fig. 1, upper
panels). We have been studying and defining a computa-
tional model of this complex cognitive mechanism based on
intelligent processing of digital images.

Image processing algorithms, IPAs, are usually intended

to detect and localize specific features in a digital image

analyzing, for example, spatial frequency, texture confor-

mation, or other informative values of loci of the visual

stimulus. Applying an IPA to an image means transforming

that image into a new range of pixel values defining the

corresponding algorithm feature. Local maxima in the

transformed image represent loci wherein that particular

feature is particularly accentuated and they can, conse-

quently, be used as a basis for identifying aROIs,

algorithmically detected Regions-of-Interest. Many local

maxima may be generated by an image transformation:

Therefore, a clustering procedure is required to reduce the

initial large set of local maxima into a final small subset of

aROIs (Fig. 1, lower panels).

aROIs and hROIs can be compared to each other through
analysis of their spatial locations or structural binding and
also analysis of the temporal order or sequential binding. The
result of these comparisons measures the capability of an IPA,
together with its clustering procedure, to predict hROIs.
Thus, our aim is explicit and our measures quantitative. The
overriding question is whether IPAs can treat an image in a
fashion similar to human sequential glimpses.

In Section 2, the experimental protocol to acquire eye
movement data is discussed in detail. Section 3 is devoted
to defining a list of IPAs. The clustering and sequencing
issue is considered and explained in Section 4. The
computational and statistical platform used to compare
hROIs and aROIs is introduced in Section 5. Top down
vision and human scanpath are discussed in Section 6. In
Section 7, the results of the comparisons are discussed and,
finally, an application is presented in Section 8.

2 STIMULUS PRESENTATION AND EYE MOVEMENT

MEASUREMENT

Computer controlled experiments presented pictures and
carefully measured eye movements using video cameras
[21]. An infrared source light was projected toward the eye
of the subject, generating a bright Purkinje reflection on the
cornea, reflection that was easy to track by a video camera
and the eye-tracking server. The subject was instructed to
watch the visual stimuli (for a duration of four seconds, plus
a calibration period before and after data acquisition) on a
computer screen which was socket-connected to the eye-
tracking server. The subject was seated in front of the screen
with his head secured onto an optometric chin-rest
structure. The viewing distance was approximately 40 cm
from the computer screen; stimulus size was an average of
15 cm x 20 cm, yielding a subtended visual angle of
approximately 21� 29 degrees, and the resulting accuracy

970 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 22, NO. 9, SEPTEMBER 2000

. The authors are with the Neurology and Telerobotics Units, 486 Minor
Hall, University of California, Berkeley, Berkeley, CA 94720-2020.
E-mail: {claudio@rov, stark@pupil}.berkeley.edu.

Manuscript received 7 Apr. 1999; revised 28 Oct. 1999; accepted 7 June 2000.
Recommended for acceptance by D. Jacobs.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 109560.

0162-8828/00/$10.00 ß 2000 IEEE



of the eye-position recording system was of the order of

one-half to one degree of visual angle.
A fixation analysis algorithm was then applied to the eye

movement data to distinguish rapid saccade jumps (Fig. 1,

upper right panel, arrows) from location of eye fixations

(Fig. 1, upper right panel, squares, note the eye movement

sampling, upper left panel).
Seven subjects were used during eye movement experi-

ments. Fifteen different images were utilized, including

terrain photographs, landscapes, and paintings. We also

used image modifications of some of these stimuli, such as

embossed effect or binary thresholding. No specific instruc-

tions were given. All subjects had previously seen each

picture at least once. Unfamiliarity with the viewed images

may affect eye movement patterns [26] and it may

correspondingly bias the results for some subjects. Since

all observers had some degree of familiarity with the

pictures and since no specific tasks were provided, we

believe each observer looked at those pictures using

intuitive and natural internal cognitive models (Section 6).
Each subject was asked to repeat the experiments within

a few days for a total of four viewing sessions over

approximately two weeks. By comparing different viewing

sessions, we could study consistency in the way each

subject looked at specific visual stimuli and we compared

the consistent results with algorithmic performance. During

each experimental run, the complete sequence of images,

each time in different order, was displayed to the subjects.

3 IMAGE PROCESSING ALGORITHMS (IPAS) USED

FOR IDENTIFYING aROIS

The information content of a generic image can be
abstracted by different image parameters that, in turn, can
be identified by relevant IPAs. In this sense, applying
algorithms to an image means mapping that image into
different domains, where, for each domain, a specific set of
parameters is extracted. Those parameters may be related to
important attentional features of human vision. In our
study, only the loci of the local maxima from each domain
were retained in the processed image; these maxima were
then clustered in order to yield a limited number of aROIs.

3.1 List of Algorithms

1. X , an x-like mask of 7� 7 pixels, positive along the
two diagonals and negative elsewhere, was con-
voluted with the image. We also used different high-
curvature mask convolutions, for example, the º< º-
like mask whose definition is intuitive (see, for
example, [14]). A scale of interest of 7� 7 pixels
corresponded, in our experiments, to a visual angle
of 0:3� 0:3 degrees � degrees (as a function of the
viewer distance from the visual stimulus). This scale
was empirically chosen on the basis of a preliminary
study and several other factors, such as computa-
tional convenience.

2. S, symmetry, a structural approach, appears to be a
very prominent spatial relation (see, for example,
[9]). For each pixel x; y of the image, we defined a
local symmetry magnitude S�x; y� as follows:

S�x; y� �
X

�i1;j1�;�i2;j2�2ÿ�x;y�
s��i1; j1�; �i2; j2��; �1�

where ÿ�x; y� is the neighborhood of radius 7 of
point x; y defined along the horizontal and vertical
axis

�ÿ�x; y� �
�xÿ r; y�; . . . ; �x; y�; . . . �x� r; y�;
�x; yÿ r�; . . . ; �x; y� r��

and s��i1; j1�; �i2; j2�� is defined by the following
equation:

s��i1; j1�;�i2; j2�� �
G� �d��i1; j1�; �i2; j2��� jcos��1 ÿ �2�j:

�2�

The first factor, G�, is a Gaussian of fixed variance,
� � 3 pixels, and d��� represents the distance
function. The second factor represents a simplified
notion of symmetry: �1 and �2 correspond to the
angles of the gray-level intensity gradient of the
two pixels �i1; j1� and �i2; j2�. The factor achieves
the maximum value when the gradients of the two
points are oriented in the same direction. The
Gaussian represents a distance weight function
which introduces localization in the symmetry
evaluation. Consequently, our definition of sym-
metry was based on the orientation correspon-
dences of gradients around the centered point [18].
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Fig. 1. Computer and human processingÐcomparing human identified
Regions-of-Interest, hROIs, (upper right) with algorithmic identified
Regions-of-Interest, aROIs, (lower right). Note eye movement sampling,
(upper left) and local maxima in the processed image (lower left).



Alternatively, a normalization of the axial quad-

ratic moment could be used to compute the

symmetry transform [6].
3. W, a discrete wavelet transform, is based on a

pyramidal algorithm which splits the image spec-
trum into four spatial frequency bands containing
horizontal lows/vertical lows (lh), horizontal lows/
vertical highs (lh), horizontal highs/vertical lows
(hl), and horizontal highs/vertical highs (hh). This is
achieved using a pair of conjugate quadrature filters,
CQFs [24], which act as a smoothing filter (i.e., a
moving average) and a detailing filter, respectively,
(see, for example, [20]). The two filters are separately
applied on each row and column of the input image.
Each filtering is followed by a down-sampling by a
factor of two which finally yields the four octave
subbands. The procedure is repeatedly applied to
each resulting low-frequency band resulting in a
multiresolution decomposition into octave bands.

We used different orders from the Daubechies

Wdb and Symlet Wsy family bases [4] to define CQF

filters. For each resolution i, only the wavelet

coefficients of the highs/highs hhi matrix were

retained (representing the details at each different

resolution) and these were relocated into a final

matrix HH (with the same dimension as the original

image) by the following combination:

HH �
Xn
i�1

�i�hhi�; �3�

where n is the maximum depth of the pyramidal

algorithm (n � 3, in our case) and where ���� is a

matrix operation which returns an up-sampled copy

of the input matrix hh: basically, the inverse of the

down-sampling operation applied during the filter-

ing process.
4. F , a center-surround 7� 7 quasi-receptive field

mask, positive in the center and negative in the
periphery, was convoluted with the image.

5. O, difference in the gray-level orientation, is
possibly also analyzed in early visual cortices
(see also, [11]). Center-surround orientation differ-
ence was determined first by convoluting the
image with four Gabor masks with angles 0�,
45�, 90�, and 135�, respectively. For each pixel, x; y,
the scalars result of the four convolutions was then
associated with four unit vectors corresponding to
the four different orientations. The orientation

vector �o�x; y� was represented by the vectorial
sum of these four weighted unit vectors. We
defined the center-surround orientation difference
transform as follows:

O�x; y� �
�1ÿ �o�x; y� � �m�x; y�� k �o�x; y� kk �m�x; y� k;

�4�
where �m�x; y� is the average orientation vector

evaluated within the neighborhood of 7� 7 pixels.

The first factor of the equation achieves high values

for large differences in orientation between the

center pixel and the surroundings. The second factor

acts as a low-pass filter for the orientation feature.
6. E, edges per unit area, was determined by detecting

edges in an image, using the Canny extension of the
sobel operator [3] and then congregating the edges
detected with a Gaussian of � � 3 pixels (see [19] for
perceptive and psychology notions on edges).

7. N , entropy was locally calculated as
P

i2G fi log fi,
where fi is the frequency of the ith gray level within
the 7� 7 surrounding region of the center pixel and
G is the local set of gray levels. Local maxima
defined by this factor emphasized texture variance.

8. C, Michaelson contrast, is most useful in identifying
high contrast elements, generally considered to be an
important choice feature for human vision (see also,
[10]). Michaelson contrast was calculated as
k�Lm ÿ LM�=�Lm � LM�k, where Lm is the mean
luminance within a 7� 7 surrounding of the center
pixel and LM is the overall mean luminance of the
image. Lm was also used in our study.

9. H, the discrete cosine transform, DCT, is used in
several coding standards as, for example, in the
Jpeg-DCT compression algorithm (see Section 8).
The image was first subdivided into square blocks
(i.e., 8� 8 pixels); each block was then transformed
into a new set of coefficients using the DCT; finally,
only the high frequency coefficients were retained to
quantify the corresponding block.

10. L, the Laplacian of the Gaussian, was convoluted
with the image (see Fig. 2 for comparisons with
algorithm 4, F ).

3.2 Biological Principles of the Algorithms

We tried to gather a wide collection of algorithms of all

sorts (10 algorithms are studied in this paper). Some of

them do fit within the intuitive or partly empirical notions
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Fig. 2. Kernels F and LÐAlgorithm F , the quasi-receptive field mask (left) and algorithm L, the Laplacian of the Gaussian (right).



of human vision and visual neurophysiology, but gathered
far and wide. We then let our experiments select which of
this wide collection of algorithms, when faced with the task
of finding aROIs, adhered to a similar identification of
hROIs that our human subjects found as indicated by their
eye movement fixations (see next section).

Can we look at the successful predictable algorithms and
decide important truths about how the human brain
controls our vision? In a sense, we can. As we said, it
appeared that several of the algorithms acted as we might
have intuitedÐlooking at center-surround structure with
high local contrast, finding symmetrical features, or areas
with high edges density. This applies to ordinary pictures
and scenes. Of course, the human visual brain is very
flexible and, for a particular set of pictures, and for a
particular task, and indeed with trained inspectors, quite
nonobvious kernels might be utilized to great benefit. We
suspect that the brain, with its enormous top-down
approach, has the ability to synthesize image processing
algorithms well beyond those that have been incorporated
(by evolution) into the bottom-up mechanism of the retina
and early vision cortical processing (which, alas, have been
the ones most studied by vision neurophysiologists).

In other words, even those algorithms that do not have
an intuitive and straightforward biological plausibility
may be successful in predicting eye fixations. This is why
we say that we don't want to select our algorithm a priori:
Only a posteriori, e.g., after the comparisons with human
data, we can finally identifyÐselectÐthe best matching
algorithms.

Our approach, in general, allows us to study these
artificial IPAs and then provides us with a further
opportunity to form new assumptions regarding saliency
of a specific successful IPA based upon human experi-
mental results.

4 CLUSTERING AND SEQUENCING

In general, in a three-second eye movement experiment,
there were about seven to 11 fixations. As asserted in
Section 2, a fixation analysis algorithm was applied to the
eye movement data to distinguish rapid saccade jumps
from location of eye fixations. Consecutive and very near
fixations were usually merged into a single (and longer)
fixation by the analysis algorithm: Saccades between those
fixations are usually referred to as micro saccades. Seven
aROIs represented the final average number of fixations
from our experiments.

The IPAs resulted in defining many local maxima widely
over the image; a clustering procedure was then applied to
reduce this large set of local maxima to the final small
subset of aROIs (n � 7). Thus, the resulting string of aROIs
were similar in number to human eye movement fixation
glances looking at similar images.

The initial set of local maxima was clustered by
connecting local maxima and gradually increasing the
acceptance radius for joining them. During each step of
the clustering process, all local maxima less than a specific
radius apart were clustered together (Fig. 3). Each cluster
inherited the maximum value of its component points (local
maxima): The locus of this highest valued maximum for

each cluster then also determined the locus of that cluster.
Only that maximum point was retained; all the others
composing local maxima were deleted. The procedure was
repeated while increasing the acceptance radius at each
step. The decision to end the clustering process was reached
only when a predefined number n of clusters remained. The
values of the remaining clusters, ordered from highest to
lowest, permitted us to relate the sequence of clusters,
aROIs, to sequences of human fixations.

Algorithm N was applied, for example, to a Chilean
desert photo (Fig. 4, upper left panel) and the initial set of
local maxima (Fig. 4, upper right panel) was then clustered
(Fig. 4, lower left panel; partway through the clustering
process). The final ordering is indicated by the arrows
connecting the cluster loci and superimposed on the
original image (Fig. 4, lower right panel). Note the
maximum valued locus for each cluster.

Other clustering procedures have been investigated.
However, no significant disparities in the overall perfor-
mance of our system have been noted when different
clustering procedures were compared to each other. This
may be quite intuitive; it is the nature of the processed
image (i.e., the IPA used), more than the clustering
procedure that most influenced the final distribution of
aROIs (Privitera et al. [15]).

If we had used only IPAs and not the clustering
procedure, we could have selected, for example, the seven
highest local maxima directly and defined them to be the
aROIs. Those selected aROIs, however, might be much
more closely spaced. Thus, the clustering procedure was
actually an eccentricity-weighting procedure, where even
lower local maxima that were eccentrically located could
finally be selected to form an aROI. This is important for
comparison to human fixations because subjects often
focused their attention on significant eccentric loci on the
image.

All the algorithms and the clustering procedure were
implemented in Matlab and executed on a Pentium II PC.
The execution time for the algorithms ranged from a few
minutes to several minutes depending on the algorithm.
The clustering procedure typically took about 10 minutes.

5 COMPARING AND SORTING PROCEDURES

The aROI loci selected by our different IPAs and those loci
defined by human eye movement fixations, hROIs, can be
compared. In this section, we describe the statistical and
computational platform we have been using for these
comparisons (see also [16]).
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Fig. 3. Clustering Procedure: A Single StepÐDuring each step of the
clustering process, all local maxima less than a specific radius Di apart,
are clustered together. Then, the highest valued maximum of each
cluster determines the locus for that cluster and all the remaining
maxima are removed. The process continues as the acceptance radius
Di at each step increases.



5.1 Comparison of Two Sets of ROIs

Comparison of final clusters of ROIs began with taking two
sets of ROIs (Fig. 5, middle, upper, and lower panels) and
clustering these two sets using a distance measure derived
from a k-means preevaluation. This evaluation determined
a region for calling any ROIs that were closer than this
distance coincident and any ROIs that were further apart
than this distance noncoincident; the distance was about
two degrees and similar in size to human foveal spans for
moderate visual acuity. All the coincident ROIs (named
joined-ROIs) were labeled with the same alphabetic char-
acter (Fig. 5, right panel) and they then enabled a similarity
metric, Sp, to determine how many ROIs two algorithms (as
in the example shown in Fig. 5, note the processed image in
the left panels), or two humans, or an algorithm and a
human had in common; the final value was normalized
based upon string length. The individual sources of the
elements, that is, the original ROIs, used in these final
interactive steps are preserved as circles and squares (Fig. 5,
right panel) to illustrate the procedure.

As mentioned above, ROIs were ordered by the value
assigned by the IPA or by the temporal ordering of human
eye fixations in a scanpath. Then, the joined-ROIs could
finally be ordered into strings of ordered points. Here
(Fig. 5), we have, for example: stringE � abcfeffgdc and
stringS � afbffdcdf . The string editing similarity index Ss
was defined by an optimization algorithm [21] with unit
cost assigned to the three different operations: deletion,
insertion, and substitution.

In summary, our comparisons yielded two different
indices of similarity which told how closely two sets of ROIs
resembled each other in locus, Sp, and in sequence, Ss. For
the example, illustrated in Fig. 5, all the labels of the second
string (afbffdcdf) are included in the first string
(abcfeffgdc), yielding an Sp similarity value of one. Sequen-
tially editing the first string to match the second string,

however, yields a much lower similarity index Ss. Substitut-
ing the third b with e generates afeffdcdf , cost 1; inserting b
and c after the first a generates abcfeffdcdf , cost 2; deleting
the last d and f generates, abcfeffdc, cost 2; finally, inserting
g generates abcfeffgdc which is equal to the second string,
cost 1. The total cost is six and, since the original string length
was nine, Ss, the sequential similarity between the two
strings is (1ÿ 6=9) = 0:34 (see [2] for more details on string
editing).

5.2 Y-Matrices and Parsing Diagrams

Similarity coefficients can be sorted and represented for the
two measures Sp and Ss and explicitly displayed in a table,
named the Y-matrix, having as many rows and columns as
the number of the different sequences ROIs to be
considered (Fig. 6, upper panels). A complete Y-matrix
would be, of course, too large to display and, thus, to read.
Parsing diagrams (Fig. 6, lower panels), with averages of
similarity coefficients collected from the arrays of the
Y-matrices, are a compact and intuitive alternative way to
look at the data: R for Repetitive scanpaths, same subject
looking at the same picture at different times; L for Local,
different subjects, same picture; I for Idiosyncratic, same
subject, different pictures; G for Global, different subjects
and different pictures.

For our human experiments, the truncated Y-matrix
(Fig. 6, upper panels), representing only a small part of the
entire set of comparisons, refers to only two images and two
subjects. This Y-matrix, however, is sufficient to illustrate
how Y-matrices are translated into a parsing diagram. For
example, the Y-matrix diagonal represents the Sp auto-
similarity coefficients (labeled R) of each subject looking at
the same picture over different times; these coefficients then
generate a unique averaged coefficient reported in the
Repetitive box of the parsing diagrams (Fig. 6, lower
panels). The same ordered collection of the coefficients of
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Fig. 4. Clustering Procedure: To completionÐAlgorithm N , entropy, is applied to a Chilean desert photo (upper left). The initial set of local maxima

(upper right) is then clustered using the defined iterative procedure (lower left: partway through the process). The final ordering, superimposed on the

original image, is shown in the lower right panel; the maximum-valued locus for each cluster is inserted in the figure.



the Y-matrix arrays is applied for the other types of

comparisons: Local, Idiosyncratic, and Global. The parsing

diagram (lower panels, Fig. 6) refers to all images and

subjects; in general, we report Y-matrices only when a

restricted subset of comparisons needed to be considered.
The most important distinction is that between Repeti-

tive similarity, R (upper left box, Fig. 6, lower panels), and

Global similarity, G (lower right box). The R value for

human, with the Sp measure, equaled 0:64. This means that

the strings for repetitive viewing of the same stimulus for

the same subject have loci that were 64 percent within

fixational or foveal rangeÐthis represented continuing

support for the scanpath theory (see the following Section

6). For Global, all different subjects looking at all different

stimuli had an Sp value of only 0:28. This number was

somewhat different from the expected Sp value of 0:21

based upon consideration of a random model, Ra (bottom

box).

6 TOP-Down VISION AND THE SCANPATH THEORY

The scanpath was defined on the basis of experimental

findings. It consists of sequences of alternating saccades and

fixations that repeat themselves when a subject is viewing a
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Fig. 6. Y-matrices and Parsing DiagramsÐSp and Ss similarity indices for different subjects (or different algorithms) and for different pictures can be
arranged in a Y-matrix (upper panels, only two subjects and two pictures are reported for clarity) with each value being the average of several
repetitions. Parsing diagrams (lower panels, for all the subjects who participated in the eye movements experiments and all images) represent the
averages of these similarity indices (see bolded letters in the Y-matrix) in a more collected and intuitive fashion.

Fig. 5. ROIs Comparisons ProcedureÐAction of each algorithm yields a transformed image (left column) for two examples, E (edges per unit area,
upper), and S (symmetry transform, lower). Final aROIs in each image are ordered by value and connected with arrows in analogy to eye movement
sequences of fixations (central column, the original image is display at very low contrast to help the viewing of the arrows). The two sets of aROIs are
finally combined (right panel) into a number of joined-ROIs (labeled with capital letters), further used to measure the distance between the two sets.



picture. Only 10 percent of the duration of the scanpath is
taken up by the collective duration of the saccadic eye
movements, which thus provide an efficient mechanism for
traveling over the scene or regions of interest. Thus, the
intervening fixations or foveations onto hROIs have at hand
90 percent of the total viewing period (see [1] and also
Section 2). The glimpses or fixations place the high
resolution foveal center of the retina onto hROIs; of course,
low resolution peripheral vision plays an additional
important role.

Scanpath sequences appear spontaneously without spe-
cial instructions to subjects and were discovered to be
repetitive; note the high R indices in the parsing diagrams
(Fig. 6: 0:64 for Sp and 0:42 for Ss). This repetitiveness
suggested to Noton and Stark [12] that a top-down internal
cognitive model controls perception and active looking of
eye movements in a repetitive sequential set of saccades
and fixations, or glances, over features of a scene so as to
check out and confirm the model [21]. Other evidence
comes from studies of eye movements during visual
imagery experiments [2] and ambiguous figures [23].

When the same observer was asked to look repetitively
at different modifications of the same pictures over different
viewing sessions (embossed and binary thresholding mod-
ifications of Madame and After the Shower), we found high
R-similarities: 0:45 for Sp and 0:38 for Ss. A possible
interpretation of this result is that the same internal model
controlled eye movements for different modest modifica-
tions of the same pictures, further validating the scanpath
theory.

Of course, the objective or task can affect the active
looking of eye movements [25], [26]. Nevertheless, without
any specific task instruction, for general viewing conditions,
when different subjects look at the same picture, they are
fairly consistent in identifying regions of interest as
indicated in this study by the high L values (Fig. 6: 0:54
for Sp and 0:28 for Ss).

The strong scanpath consistency reported in human
experiments when no specific objective is given to the
subjects means that only a specific restricted set of
representative regions in the internal cognitive model of
the picture is essential for the brain to perceive and
eventually recognize that picture. This representative set
is quite similar, (Fig. 6, Sp = 0:54) for different subjects and
this brings us to the main scientific objective of our work:
Whether it is possible to identify automatically this set by
using IPAs.

Comparing aROIs with hROIs is the standard utilized to
study and select which IPAs are more successful in this
objective; if a specific task is given, different hROIs may
result and, consequently, different algorithms may be
selected from our collection [15].

The global similarity value, G, represents any invariant
components of eye movementsÐthe use of some global eye
movement strategy control, as an unlikely example, the
tendency to start at the center of the image and then scan
circularly around the periphery. Indeed, reading eye move-
ments has a high G value since all English readers start at
the upper left and proceed horizontally across each line and
descend vertically line by line [21]. Global similarity is

actually the antithesis of our basic theory because it would
prove that a general and invariant motor program controls
eye movements rather than an idiosyncratic internal motor
model based on image-specific modeled regions of interest,
hROIs. However, our results always showed that this
component is very low, but usually somewhat higher than
Random. Consequently, G's similarity is considered as a
bottom anchor for our scale of comparisons.

Random similarity value, Ra, is more intuitive than
global similarity and it is usually considered as a second
important bottom anchor for our comparisons: It represents
how similar randomly generated scanpaths are to each
other. This value is 0:21 and it is equivalent to the similarity
value between randomly generated scanpaths and hROIs.

Finally, we would like to guide the reader's attention
again to the Local value of the Sp-parsing diagram. This
value was 0:54 and it basically says that, when different
people view the same image, only an average of 54 percent
of their hROIs cohere. This was an important result for this
study, in fact, algorithms cannot be expected to predict
human fixations better than the coherence among fixations
of different persons. Consequently, this Local value must be
considered as our main (top-anchor) criterion for evaluating
the performance of our algorithms when compared with
human data (Section 7).

7 hROIS VS. aROIS COMPARISONS

We are, of course, most interested in the use of our
methodology to test our dataÐto analyze the capability of
IPAs and clustering procedure to predict eye fixations. But,
we are also interested in the interrelationships among
algorithms. In this section, we present and discuss the
different aspects derived from the comparison results.

7.1 Parsing Diagrams

We gathered the crucial comparisons between algorithms
and eye fixations together into parsing diagrams (Fig. 7).
The ability of all the algorithms (labeled A in Fig. 7) to
predict eye fixations was demonstrated by the number in
the upper right box, L, of the left panel, Sp. The average for
all the algorithms applied to all the pictures was 0:33.

On the basis of having this large a number of measures
between algorithms, images, and subjects, we selected a
subgroup of algorithms (A � = Wdb, L, O, and S). For this
selection, the Sp similarity rose to 0:36 and the Anova test
showed a considerable significance (27:0 related to the
F -Fisher critical value of 7:5, see, Appendix).

Fig. 8 shows two qualitative examples of our algorithms
for two different images (a painting and a photo of the
Chilean desert). aROIs and hROIs are superimposed upon
the image and they cohere well: aROIs on the left panels are
represented with a sequence of circles and they correspond
to algorithms Lm, upper, andWsy, lower; hROIs on the right
are represented with a sequence of squares. The Ss parsing
diagram showed little coherence, even among all the
algorithms, providing support of an earlier preliminary
study, [22], that the IPAs and the clustering procedures we
used cannot predict sequencing of human eye movements.

The parsing diagrams reported in Fig. 7 represent the
result for all scenes. Algorithms can be selected a posteriori

976 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 22, NO. 9, SEPTEMBER 2000



based on the Sp comparison results between aROIs and
hROIs. Four algorithms, for example, X , S, Wdb, and F ,
seemed to cohere very well with human data, subjects A, C,
H, and T, for a specific class of images (paintings). The
corresponding similarity values for those algorithms and
human scanpaths were extracted from the original wide
Y-matrix (which includes all the comparison values) and
explicitly reported in Fig. 9 (average coherence between
aROIs and hROIs was 0:56). The remaining algorithms are
not shown in the same figure for simplicity and it is implicit
that their coherence values with the same human data (and
the same class of images) is lower: an average of 0:37. A
third coherence (not shown) was achieved for the set of
Mars terrain images alone and algorithms C, Wsy, and E
(average coherence was 0:43).

Fig. 9 is intended to show how, for a particular class of
images, it is possible to identify a few algorithms whose
similarity coefficients approach top-anchor criteria. This is
despite the overall moderate similarity obtained when the
average of the entire collection of algorithms is considered
(parsing diagram in Fig. 7).

Several subjects from our lab, extraneous to this project,
were asked to qualitatively judge the distribution of aROIs
over the pictures for all the algorithms and the pictures that
have been used in this study. The subjects that participated
in the test were asked to judge, based on their own
intuition, the position of aROIs: whether or not the set of
aROIs for a specific algorithm was located on significant
regions of interest and whether or not the regions of interest
of the image were all represented by that set of aROIs. Three
different grades were suggested: good, medium, and bad.

First, a total of 64 percent of aROIs were considered

acceptable or good. For each image, we could finally rank

each of the algorithms based on the average grade it

obtained. Then, ordering these results for each algorithm

and for each image, we computed the correlation with the

ordering generated by our Sp metric. The average correla-

tion was quite high, around 0:7, and it confirmed the

relationship between these human qualitative evaluations

of aROIs and our metric Sp.
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Fig. 8. Qualitative Comparisons of hROIs and aROIsÐTwo examples of
good Sp-similarity between aROIs (right column: Lm, luminance, upper
and Wsy, wavelet, lower) and hROIs (left column). Sp � 0:62 and
Ss � 0:13, upper panel; Sp � 0:87 and Ss � 0:13, lower panel. Note low
values of Ss indicate that string sequences could not be identified by the
algorithms.

Fig. 7. Parsing Diagrams for Comparing aROIs and hROIsÐCrucial
comparisons between all algorithms, eye fixations, and images are
gathered in the parsing diagrams for Sp, upper panel, and Ss, lower
panel. Mean values are in bold outside the parentheses. Tests of
significance are represented by the Anova test value (in bold within the
parentheses to the right of the standard deviation, see the Appendix).
Left column, boxes R, Repetitive, and I, Idiosyncratic, show the
autocorrelation when the same algorithm is applied to the same, R, or
different, I, pictures. Of course, R is 1. Right column, boxes L, Local, and
G, Global, show the cross-correlation between algorithms and eye
fixations. Note box L where the similarities between algorithms and eye
fixations refer to the same picture (and then averaged for all pictures).

Fig. 9. Coherence and Independence among Selected Algor-
ithmsÐY-matrices for a selected set of images (paintings) and a
selected group of algorithms X the x-like mask, S symmetry, Wdb

wavelet, F the quasi-receptive field mask, and subjects, A, C, H, and
T. Algorithms are selected a posteriori based on cross-similarity with
human eye fixations (see average values in the parsing diagrams).



7.2 Criterion for Evaluating the Algorithms

A main characteristic of our approach is the definition of
two quantitative metrics, Sp and Ss, utilized to validate the
algorithms and to analyze eye movement patterns. Sp is the
coherence in the location of two sets of regions of interest,
ROIs; Ss is the coherence in the ordering of the two sets.

When Sp was used to evaluate the coherence of different
human subjects viewing the same image, the resulting
coefficients, averaged for all images and subjects, was 0:54
(see the L, local value, in the parsing diagram, Fig. 6). This
signifies that, when different subjects view the same image,
an average of 54 percent of their hROIs did cohere.
Algorithms cannot be expected to cohere with human
fixations better than the level of coherence amongst
fixations of different humans: This is why the L local value
of 0:54 is considered to be the main criterion and the results
from our algorithms discussed in the manuscript should be
considered in the light of this criterion.

As reported above, when we selected some of the
algorithms on the basis of specific types of images (for
example, paintings or Mars pictures), the Sp coherence
between hROIs and aROIs ranged from 0:43 to 0:56. We
consider this level of coherence as a very positive and
important result. Thus, our large collection of algorithms
can provide different selection policies both for different
images and for different tasks [15]. In general, averaging for
all images and algorithms, Sp ranged from 0:33 to 0:36 (as
reported in Fig. 7): still significantly higher than the chance
level.

The qualitative evaluation of the algorithms in the form
of a questionnaire was very helpful.

Combining different IPAs may improve this predict-
ability and the versatility of the system for a larger class of
images and our algorithms can be used as building blocks
(see, for example, [8], [5], [13]). Other models in the
literature are often evaluated uniquely from a qualitative
point of view, without rigorous metrics and, especially,
without really taking into account experimental human
data (the L local similarity for example). Contrariwise, we
evaluated our algorithms using the same statistical

procedures and metrics used to study eye movements and
we did document eye movement results: We believe that
this provides the best term of comparison.

7.3 Relationships Among IPAs

We wished to obtain as wide a variety of image processing
algorithms as possible and to keep the coherence between
pairs of image processing algorithms small. Thus, our wide
variety of image processing algorithms would have
independent actions on the images and they could serve
to identify aROIs for a variety of picture types, and for a
variety of visual identification tasks [15].

Cross-similarity coefficients are shown (Fig. 10, see also,
[16] for preliminary results), for example, for a group of six
algorithms, Wdb , Wsy , L , N , F , and C; the average
similarity for Sp, left panel, was 0:44 (0:57, 0:39, and 0:37)
between the first three algorithms and 0:64 (0:61, 0:63, and
0:69) for the second three. Cross-similarity between ele-
ments of the two subgroups was 0:22 (ranging from 0:28 to
0:15), almost the same self-consistency found for different
instances of the random algorithm. The values for the first
and the second group were significantly higher than the
random self-consistency: For the second group, the values
really approached the same high significant repetitive self-
consistency found in human experiments. The coefficients
in Fig. 10 show how algorithms can be widely chosen and
that they may have independent or similar effects (bolded
rectangulars in Fig. 10) on images. Note that the coefficients
for Ss were much lower than the coefficients for Sp.

The other algorithms have not been inserted for
simplicity in the table of Fig. 10 because they are not
together, a third independent group: When compared with
the rest of the algorithms, the resulting Sp cross-similarity
values range between the extreme values reported for the
two groups in Fig. 10.

7.4 Overall Performance of the Algorithms

Our metrics, Sp and Ss, served to evaluate coherence
between algorithms and human subjects. We were not only
interested in proving (or counterproving) the predictability
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Fig. 10. Coherence and Independence among AlgorithmsÐCross-comparison values of six algorithms for two indices, Sp and Ss. Enclosed within
the dashed boxes are two different groups of algorithms: Each group is internally characterized by high Sp similarity, but cross-similarity in Sp
between groups is very low. This means that algorithms are widely chosen and that they may have independent or similar affects on images. Note
that Ss values are very low.



of eye fixations but also in studying the coherence between
algorithms in the attempt to obtain as wide a variety of
algorithms as possible and eventually to formulate new
kernels. Of course, some pairs of algorithms cohered.
Nevertheless, our results identified independent groups of
algorithms (see example in Fig. 10); thus, our collection of
algorithms could be sorted for similarities or for differences
in generating aROIs. This sorting of algorithms has three
objectives. First, we aim at achieving efficiency by not using
redundant algorithms. Second, this will help us in our
search for an even wider spectrum of algorithms, some of
which might play an important role in particular tasks.
Third, we might be able to understand some aspects of
human vision.

In general, Wavelets, W, seemed to be very efficient for
several classes of imagesÐmaybe due to their implicit
multiresolution analysis, which allows extracting local
maxima corresponding to different feature scales. Symme-
try, S, seemed to be very efficient for general images
(paintings, for example, as reported previously), confirming
some earlier psychophysics results. Contrast, C, cohered
very well for terrains: We used rocky Mars terrain images
where rocks (likely to be identified by the viewers) were
easily discerned from the soil by their darker material
strongly contrasted with the uniform brighter color of the
soil. Contrast is generally considered to be an important
feature for human vision.

Based on the subjective questionnaire results, Edges per
unit area, E, and Orientation, O, also well-satisfied the
subjective qualitative parameters of the viewers for general
images (not including terrains and the aerial photo): They
also have some structural relations with features experi-
mentally found in visual receptive fields. The DCT
algorithm H seemed poorly cohered with human data for
all the images used in the study.

The goal of this paper is to propose an engineering
approach to substitute for human visual attention and eye
movements. The set of algorithms we picked up represents,
of course, only a small portion of the many different kernels
and procedures that could be utilized. However, our
selected set of algorithms within our experimental condi-
tions could indeed predict eye fixations; this may have
several cognitive and neurological interpretations that are
beyond the scope of the present manuscript and that we
would like to leave open for future research and the
readers' intuition.

8 APPLICATION OF aROIS

Certain computer vision applications might benefit from an
apparatus that automatically identifies regions of visual
interest in a digital image. For example, we have defined a
JPEG encoder, named Focused JPEG, based upon on aROIs
(see also [17]). The difference with the standard JPEG
baseline is that in our Focused JPEG baseline the magnitude
of the quantizer factors for each 8� 8 pixels JPEG block are
adaptively related to the distance from the set of aROIs by
means of the following rule:

Q�x; y�i � QiS�dmin�x; y��; �5�
where dmin�x; y� is the minimum distance between the block
x; y in the image and the set of aROIs. S��� is a stepwise
monotonic function equal to the unity for distance dmin�x; y�
that is appropriately small (center of ROI) and then
increasing with the distance; Qi is the original standard
quantizer coefficient.

Algorithm O was applied, for example, to a countryside
photo and five aROIs have been identified (Fig. 11, upper
panel). The Focused JPEG compression was then applied to
the image based on those identified aROIs where
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Fig. 11. Focused JPEG compression based on aROIsÐFive aROIs (arrows) were identified using O, orientation; aROIs were maintained at higher
resolution by the Focused JPEG compression. The Focused JPEG compressed image is shown in the lower left panel and a standard JPEG
compression in the lower panel. Total compression was the same in both examples, but the visual fidelity is much higher with Focused JPEG
compression.



S�d�x; y�� � 2 for 0� � d�x; y� < 1�, degree of the visual
angle (note that aROIs are also slightly compressed);
S�d�x; y�� � 250 for 1� � d�x; y�. The Focused JPEG com-
pressed image (Fig. 11, lower left panel) can be compared to
the standard JPEG compression (Fig. 11, lower right panel)
with the same amount of compression (100 : 4), see, also
[27].

9 DISCUSSION

Our method provides a precise task for the IPAs we have
studiedÐto predict human scanpaths, both loci and
sequences of eye movement fixations, or foveations. The
method also provides for quantitative measurements of
prediction accuracy.

In this paper, we have validated that a constellation of
IPAs used in conjunction with a clustering procedure can
predict, for Sp, the loci of human fixations. Our results
indicate, however, that the algorithms cannot predict the
sequential ordering, Ss, of the subfeatures used by a person.
Human ordering is idiosyncratic to the subject and to the
specific image, as reported in the famous book by Yarbus
book [25] and deeply investigated in our lab over the past
decades of eye movement experiments. Thus, it is unrea-
sonable to expect an algorithm to be able to predict the
temporal order of eye fixations and the poor Ss predict-
ability of the algorithms serves as an important counter-
example to our technology.

The wide selection of algorithms gives us an opportunity
to study the differences and similarities in terms of the
precise task we consider. These algorithm characteristics are
of great interest to us as indicators of the general nature of a
picture and how either algorithms or humans process it. We
might need to provide weighting coefficients for the
different algorithms in order to optimize the prediction
capabilities of the ensemble.

In addition to finding positive image processing algo-
rithms by comparing their similarity with human data, we
can also consider random scanpaths, raROIs, which turn
out to have a much smaller average Sp-similarity with
human scanpaths for each of the images used in our study,
hROIs (see Fig. 7 for example). Let us call the random
values the bottom anchors of our working range of
similarity. Of course, with any large set of random data,
one example might cohere very closely to human data.
However, our multiple sets of images and multiple trials
make the average values for random data not only low but
also robustly so.

The top of the scale is anchored in human studies by the
repetitive value, R. More interesting than the Repetitive
anchor for our main question is the Local coefficient: how
similarly two different subjects look at the same picture.
The L coefficient enables us to determine if image-
processing algorithms can predict hROIs as well as one
subject's eye movement pattern can predict the eye move-
ment pattern of another subject for the same image. Now,
we can position an Sp value as lying somewhere in this
working range: The highest values are close to the high
similarity in loci or Sp of two humans looking at the same
image. The lowest values are the random values.

The clustering procedures we used require a good deal
of thought and preliminary studies have been reported in
Section 4. As indicated, the clustering procedure distributes
strings of aROIs in more eccentric locations than they would
be in without the clustering procedure. This eccentricity
asserted a positive effect on the similarity between aROIs
and hROIs.

In summary, the methodology defined in this paper has
been tested on a varied set of digital images that ranges
from portraits to landscapes and terrain images. A number
of subjects were used for the eye movement experiments.
Finally, independent subjective evaluations by naive sub-
jects further validated the results. The overall results are
very encouraging and we have started to define and
implement different applications such as image compres-
sion which has been presented in the last section.

APPENDIX

STUDY OF THE ANOVA: ANALYSIS-OF-VARIANCE

Regions of interest, ROIs, are generated either in human
experiments, hROIs, or using image processing algorithms,
aROIs, or randomly, raROIs; each ROI is a two-dimensional
vector representing the sequence of x; y coordinates of the
regions of interest. A specific ROI is identified by the image
to which it corresponds, say I, and the agent that generated
it, a for algorithms, h for humans, and ra for random
algorithms: The index, I, varies for all the images, h, for all
the subjects participating in the experiments and, finally, a
for all the algorithms studied in the paper. Agents h and ra
are repetitively applied to the same image; the latter is the
random algorithm and several different raROIs are gener-
ated for the same image even if there is only one random
algorithm.

We then considered one factor at a time, for
example, different agents applied to the same image
and using the metrics Sp and Ss, we generated three
different sets of similarity values or treatments: treat-
ment H � fSp�hiROIs; hjROIs�I : 8I; i 6� jg, the similari-
ties among different subjects looking at the same
picture; treatment A � fSp�aROIs; hROIs�I : 8Ig, the
similarities of algorithms and eye movements for the
same image; treatment Ra � fSp�RaROIs; hROIs�I : 8Ig,
the similarities of the random algorithm and the eye
movements for the same image. Put in statistical terms,
we have the same condition, ROIs defined within the
image coordinate space, and three treatments that
correspond to three different ways to generate and
combine these ROIs: Each treatment is quantifiable by
Sp (or Ss), which is usually referred to as the response
variable.

The number in the box L of the parsing diagram, Fig. 7,
shows the mean and the variance of second treatment A,
which is greater than the mean of Ra, bottom box. This is
actually our main criterion (mentioned several times
through the paper): It demonstrates that IPAs cohere with
humans better than the random algorithm does.

The Anova (usually capitalized, originally put forward
by Fisher [7]) is finally applied to further validate whether
or not the different experimental treatment means ��H�,
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��A�, ��Ra�, are different enough (compared to the
variability within the individual treatments) for us to
conclude that they correspond to three different popula-
tions. In other words, can we conclude that, based on those
means, the same statistical differences generated in our
experiments hold for the hypothetical infinite population of
all images and viewers? Of course, the Anova test can be
applied to any number of treatments; in the case of only two
treatments, the Anova corresponds to the Student t-test.

The Anova value is usually compared to a critical value F
of the Fisher distribution for a certain level of significance. If
the Anova test value is less than the F-Fisher critical value
for an � level of significance (0:01 in this paper), then it is
possible to infer that the means are not different enough to
come from different populations.

Our quantitative conclusions, presented in the results
section, and our claims of statistical significance were
strongly sustained by the relationship between significant
Anova test values and F-Fisher critical value. For each
factor, we always applied the Anova to the three treatments,
H, A, and Ra, to verify any statistical difference. If so, we
then applied the Anova test in pairwise fashion to verify
that this difference is due to a difference between treatment
Ra and treatment A and not to one between treatment H
and treatment A. For example, in Fig. 7, Sp, Local box, Ra,
and A have an Anova value equal to 18:7, which is greater
than the F-Fisher critical value of 7:5: This means that A and
Ra are significantly different. The same procedure can be
repeated for different factors by narrowing and/or chan-
ging the three treatments: For example, only a specific
group of algorithms can be taken into account in H, A (see
A � in Fig. 7 and Section 7.1).
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